
e. The saturated liquid properties were obtained 
by subtracting the entropy and enthalpy changes 
due to vaporization from the saturated vapor value. 

f. The saturated liquid line, as calculated in 
step e, was then used as the datum point for cal­
culating properties below the critical tempera­
ture and densities greater than those of the sat­
urated liquid. These properties were calculated 
by the isothermal integration of the appropriate 
portions of eqs (49) and (50). These expressions are 

S = SI- IP [~(a!::\ ] dp 
T pi P a'f)p 

and 

By progressing through the above procedure, the 
derived properties were calculated for the entire 
portion of the thermodynamic surface under 
consideration. However, the method of calcula­
tion outlined above may result in a discontinuity. 
This discontinuity exists at temperatures below 
the critical temperature for pressures above the 
critical pressure. The cause of the discontinuity 
arises from the fact that the calculation of the 
derived properties was performed by one proce­
dure for temperatures above the critical tempera­
ture and a second procedure for temperatures 
below the critical. For temperatures below the 
critical, the changes of entropy and enthalpy due 
to vaporization had to be calculated as outlined 
in step d, and the saturated liquid line obtained as 
outlined in step e. For temperatures above the 
critical, steps d and e were not needed for the 
calculation of derived properties. The mutual 
boundary (at the critical temperature) between 
these two regions then exhibited the disconti­
nuity. This discontinuity in the derived properties 
is possibly du e to slight disagreement between the 
isochoric slope of the equation of state (40) at the 
critical point and the slope of the independently 
obtained vapor pressure equation (14) at the same 
point. 

When the discontinuities were plotted with a 
highly expanded scale, it was determined that the 
discontinuity was independent of pressure. Ad­
justments to the derived properties were then de­
termined by smoothing the transition region for 
isobars near the critical. These adjustments were 
applied to the derived properties by making ap­
propriate corrections to the entropy and enthalpy 
of vaporization. The adjustments were added to the 
entropy and enthalpy of vaporization , thus decreas­
ing the values for the entropy and enthalpy of the 
saturated liquid. Table 10 lists the temperature 
dependent adjustments which were made. 

All of the data which have been calculated were 
restricted to the liquid and gaseous regions by using 
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TABLE 10. Adjustments for entropy and 
enthalpy of the saturated liquid 

Temperat ure Entropy Entha lpy 
K J/g- K J/g 

adju stment II adjustment U 

150 0.009539 1.431 
149 .009750 1.453 
148 .008768 1.298 
147 .007549 l. 1l0 
146 .006330 0.924 

145 .005189 .752 
144 .004160 .599 
143 .003249 .465 
142 .002460 .349 
141 .001 789 .252 

140 .001239 . 173 
139 .000811 . 113 
138 .000490 .068 
137 .000260 .036 
136 .000100 .014 
135 .000010 .001 

~ These adjustments have been subtracted from the entropy and enthalpy of the 
saturated liquid. 

the following melting curve relationship: 

In eq (54) , A and C are constants which were 
determined by a least squares fit to experimental 
data. The form of this melting curve relationship 
is discussed by Goodwin and Weber [32]. 

The experimental data which were considered 
for the determination of the constant in eq (54) 
were taken from Michels and Prins [33] , Lahr and 
Eversole [34], and Bridgman [35]. The constants of 
eq (54) were determined to be 

A = 2078.76667 

C = 1.59817868, 

with a mean of the absolute pressure deviations 
of 0.08 percent. 

The properties, density, enthalpy, internal 
energy, and entropy, are presented as functions of 
pressure and temperature in the tables of appendix 
A. The number of significant figures given in these 
tables is not justified on the basis of the uncer­
tainties of the data, but, rather, is desirable to 
maintain the internal consistency of the tables. 

A comparison of the heat of vaporization was 
made at the normal boiling point. The heat of 
vaporization of various investigators was compared 
with the value obtained by using the equation of 
state (40) and vapor pressure equation (14). This 
comparison is shown in table 11. 

TABLE 11. Comparison of heat of vaporization 
at the normal boiling point 

Frank and Clusius [361 ........ ... .. . 
Flubacher et 81. [15] .. ..... .......... . 
Euc ken [371 ..... . .. ...... ...... . 
Ziegler et al. [21 .... ...... ............. . 
This work .. .............. .......... . ... . 

1557.5± 1.5 
1555.0±4.6 
1501 
1543 .4 
1546.3 

cal/g. mol 
cal/g.mol 
cal/g·mol 
cal/g. mol 
cal/g-mol 



II. Equation of State and Saturation Boundary 

The saturation boundary can be defined by the 
equation of state if there is a sufficient number 
of highly precise experimental P-V-T data points 
along the entire boundary. However, saturation 
densities are difficult to measure with high pre­
cision. In addition, for argon there was only one 
source of satisfactory saturation data, and these 
data did not cover the entire two-phase boundary. 
Therefore, it was difficult to perform a critical 
evaluation of these saturation data for the purpose 
of determining the saturation boundary. 

Instead, there was available a relatively large 
number of P-T data points along the saturation 
boundary. For these data, the vapor pressure equa­
tion (14) was developed. Therefore , the definition 
of the saturation boundary was obtained by the use 
of two independent equations - the equation of 
state (40) and the vapor pressure equation (14). 

The saturation bounJary, as defin~ed by the 
equation of state alone, was then examined for 
internal thermodynamic consistency by using the 
conditions of thermodynamic equilibrium: 

Tl= To 
pl=po 
Gl = Co. (55) 

The equation of state (40) is a continuous function 
with a van der Waals .form across the saturation 
boundary. Therefore, the equation for thermo­
dynamic equilibrium (55) could be substituted into 
the equation of state (40). This was accomplished 
for a given saturation temperature by imposing 
the equilibrium conditions upon both the equation 

of state and the equation for the Gibbs function 
derived from the equation of state and solving them 
iteratively and simultaneously for the corresponding 
density. By this means the entire saturation ,bound­
ary was derived by the use of the equation of state 
and the conditions of thermodynamic equilibrium, 
without using the independently obtained vapor 
pressure equation (14). 

A comparison of the vapor pressures as derived 
from the equation of state and the vapor pressures 
as obtained from the vapor pressure equation was 
made. The results of this comparison are shown in 
table 12 for 5-deg temperature increments. 

The agreement shown in table 12 indicates that 
the equation of state is internally consistent with 
the conditions of thermodynamic equilibrium. 
Table 12 also indicates that the equation of state . 
satisfactorily predicts P-V-T values in the vicinity 
of the saturation boundary. 

TABLE 12. Vapor pressure comparison 

T. K PJ,Alm P'l.Atm PI-PI 

85 0.77945 0.79737 -0.01792 
90 1.32133 1.34210 - .02077 
95 2.lll03 2.13029 -.01926 

100 3.20974 3.22249 - .01275 
lOS 4.68121 4.68277 -.00156 
llO 6.59102 6.57784 .01318 
ll5 9.00650 8.97649 .03001 
120 11.99740 1l.94960 .04780 
125 15.63733 15.57082 .06651 
130 20.00587 19.91829 .08758 
135 25.19168 25.07827 .11341 
140 31.29662 31.15296 .14366 
145 38.44154 38.28020 .16134 
ISO 46.77419 46.7ll97 .06222 

PI is calculated from vapor pressure equation (14). 
P t is calculated (rom equation of state (40). 

12. Second Virial Coefficient and Intermolecular Potential 

An equation of state which has been extensively 
used is 

where B, C, D, . . . are virial coefficients and rep­
resent deviations from ideal gas behavior. The 
virial coefficients are functions of temperature and 
are related to interactions between molecules. The 
second virial coefficient, B, is related to interactions 
between two molecules, the third virial, C, to the 
interaction between three molecules, etc. When 
the gas has negligible molecular interaction as 
compared to interaction with the walls of the con­
fining vessel, then eq (56) reduces to the perfect 
gas where Z = 1. 

The virial coefficients for the equation of state 
(40) were obtained by arranging the equation of 
state into virial form as shown in eq (56). In order 
to obtain the proper form, the exponential term of 
eq (40) was expanded as 
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(nJ6p2)3+ 
3! . (57) 

Substituting eq (57) into eq (40), 

+ 4 ( n12 + nJ3 + nl4 _ nl6 n 9 
p RP RT4 RTS RP 

_ nl6 n lO _ nl6 n ll ) + (58) 
RT4 RT5 . 


